Carbon dioxide in 1-butyl-3-methylimidazolium acetate. I. Unusual solubility investigated by Raman spectroscopy and DFT calculations.
نویسندگان
چکیده
The unusual solubility of carbon dioxide in 1-butyl-3-methylimidazolium acetate (Bmim Ac) has been studied by Raman spectroscopy and DFT calculations. It is shown that the solubility results from the existence of two distinct solvation regimes. In the first one (CO(2) mole fraction ≤ 0.35), the usual Fermi dyad is not observed, a fact never reported before for binary mixtures with organic liquids or ionic liquids (IL). Strong experimental evidence complemented by effective DFT modeling shows that this regime is dominated by a chemical reaction leading to the carboxylation of the imidazolium ring accompanied by acetic acid formation. The reactive scheme proposed involves two concerted mechanisms, which are a proton exchange process between the imidazolium cation and the acetate anion and the carboxylation process itself initiated from the formation of "transient" CO(2)-1-butyl-3-methylimidazole 2-ylidene carbene species. In that sense, CO(2) triggers the carboxylation reaction. Moreover, this dynamic picture circumvents consideration of a long-lived carbene formation in dense phase. The second regime is characterized by the detection of the CO(2) Fermi dyad showing that the carboxylation reaction has been strongly moderated. This finding has been interpreted as due to the interaction of the acetic acid molecules with the COO group of acetate anions involved in monodentate forms with the cation. The observation of the Fermi doublet allows us to infer that CO(2) essentially preserves its linear geometry and that the nature and strength of the interactions with its environment should be comparable to those existing in organic liquids and other IL as well. These results have been supported by DFT calculations showing that the CO(2) molecule interacts with energetically equivalent coexisting structures and that its geometry departs only slightly from the linearity. Finally, we find that the CO(2) solvation in Bmim Ac and 1-butyl-3-methylimidazolium trifluoroacetate (Bmim TFA) cannot be straightforwardly compared neither in the first regime due to the existence of a chemical reaction nor in the second regime because CO(2) interacts with a variety of environments not only consisting of ions pairs like in Bmim TFA but also with carboxylate and acetic acid molecule.
منابع مشابه
On the spontaneous carboxylation of 1-butyl-3-methylimidazolium acetate by carbon dioxide.
The formation of 1-butyl-3-methylimidazolium-2-carboxylate in the mixture of CO(2) with 1-butyl-3-methylimidazolium acetate under mild conditions (298 K, 0.1 MPa) has been put in evidence in the liquid phase using Raman and infrared spectroscopy complemented by DFT calculations and NMR ((1)H, (13)C, (15)N) spectroscopy.
متن کاملReduction of carbon dioxide in 1-butyl-3-methylimidazolium acetate.
Gaseous CO(2) is almost irreversibly absorbed by the room temperature ionic liquid 1-butyl-3-methylimidazolium acetate ([C(4)mim][Ac]) in which it undergoes a chemically irreversible, one electron electrochemical reduction, suggesting a means for the sequestration of the greenhouse gas.
متن کاملSpecific solvation interactions of CO2 on acetate and trifluoroacetate imidazolium based ionic liquids at high pressures.
New classes of acidic or basic ionic liquids (ILs) are gaining special attention, since the efficiency of many processes can be enhanced by the judicious manipulation of these properties. The absorption of sour gases can be enhanced by the basic character of the IL. The fluorination of the cation or the anion can also contribute to enhance the gas solubility. In this work these two characterist...
متن کاملPhase Equilibrium of Ionic Liquid/Organic/CO2 Systems
The volume change and sorption of CO2 of ionic liquids(ILs) were measured in a high pressure view cell under supercritical fluid condition. Imidazolium-based ILs such as 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]), 1-butyl-3-methyl-imidazolium tetrafluoroborate ([bmim][BF4]), and 1-octyl-3-methylimidazolium tetrafluoroborate ([omim][BF ]) were employed in this research. The ef...
متن کاملUnderstanding chemical reactions of CO2 and its isoelectronic molecules with 1-butyl-3-methylimidazolium acetate by changing the nature of the cation: the case of CS2 in 1-butyl-1-methylpyrrolidinium acetate studied by NMR spectroscopy and density functional theory calculations.
NMR spectroscopy ((1)H, (13)C, (15)N) shows that carbon disulfide reacts spontaneously with 1-butyl-1-methylpyrrolidinium acetate ([BmPyrro][Ac]) in the liquid phase. It is found that the acetate anions play an important role in conditioning chemical reactions with CS2 leading, via coupled complex reactions, to the degradation of this molecule to form thioacetate anion (CH3COS(-)), CO2, OCS, an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. A
دوره 116 6 شماره
صفحات -
تاریخ انتشار 2012